
Chapter 7: Advanced SQL
IBM DB2 Universal Database V8.1
Database Administration Certification Preparation Course

Maintained by Clara Liu

Objectives

Recursive SQL
Outer Join
OLAP SQL
CASE Expressions
Typed Tables
Materialized Query Tables

Chapter 7: Advanced SQL
Recursive SQL
Outer Join
OLAP SQL
CASE Expressions
Typed Tables
Materialized Query Tables

WITH path (origin, destiny, distance, stops)
 AS (SELECT f.origin, f.destiny, f.distance
 FROM flights f
 WHERE origin='Sweden'
 UNION ALL
 SELECT p.origin, f.destiny,
 p.distance+f.distance, p.stops+1
 FROM flights f, path p
 WHERE p.destiny=f.origin)
SELECT origin, destiny, distance, stops FROM path

1

3

2

A recursive SQL statement is used when an SQL repeatedly uses the
resulting set to determine further results.
i.e. bill-of-materials or routing information

Recursive SQL

ORIGIN DESTINY DISTANCE STOPS
---------- ------------------- ----------------- -------------
SQL0347W The recursive common table expression 'DB2.PATH'
can contain an infinite loop. SQLSTATE=01605

Sweden New York 8000 0
Sweden Chicago 8700 0
Sweden Toronto 9000 1
Sweden Chicago 10500 1
Sweden Austin 11300 2
.
.
.

Recursive SQL - Result Sets

Chapter 7: Advanced SQL
Recursive SQL
Outer Join
OLAP SQL
CASE Expressions
Typed Tables
Materialized Query Tables

SELECT fname, wphone, MAX(DECIMAL(score))
 FROM db2cert.candidate c
 INNER JOIN
 db2cert.test_taken tt ON c.cid=tt.cid
 GROUP BY fname, wphone

candidate test_taken

Result set consists only of those matched rows that are
present in both joined tables

Joins or Inner Joins

SELECT fname, wphone, MAX (DECIMAL(score))
 FROM db2cert.candidate c
 LEFT OUTER JOIN
 db2cert.test_taken tt ON c.cid=tt.cid
 GROUP BY fname, wphone

candidate test_taken

Left Outer Join

Includes rows from the left table that were missing from the
inner join

SELECT name, count (DISTINCT char(tt.cid))
 FROM db2cert.candidate c
 RIGHT OUTER JOIN
 db2cert.test_taken t ON c.number = t.number
 GROUP BY name

test_takencandidate

Right Outer Join

Includes rows from the right table that were missing from the
inner join

candidate test_taken

SELECT name, count (DISTICT char(tt.cid))
 FROM db2cert.test_taken tt
 FULL OUTER JOIN
 db2cert.test t ON tt.number = t.number
 GROUP BY name

Full Outer Join

Includes rows from both the left and right tables that were
missing from the inner join

Chapter 7: Advanced SQL
Recursive SQL
Outer Join
OLAP SQL
CASE Expressions
Typed Tables
Materialized Query Tables

Star Schema

Test Center

Center ID
Name
No. Seats
...

Test Taken

Candidate_ID
Center ID
Test ID
Date
Score
...

Fact Table
Dimension Table

PK Primary Key
FK Foreign Key

Candidate

Candidate ID
Name
Phone
...

PK

FK
FK

PK

Test

Test ID
Name
Cut Score
...

PK

SELECT tt.tcid,t.name,count(*)

FROM db2cert.test_taken tt,
db2cert.test t

WHERE tt.number=t.number
GROUP BY GROUPING SETS
(tt.tcid,(tt.tcid,t.name))

TCID NAME 3
---- -- -----------
TR01 - 3
TX01 - 6
TR01 DB2 Application Development 2
TR01 DB2 Fundamentals 1
TX01 DB2 Administration 2
TX01 DB2 Application Development 2
TX01 DB2 Fundamentals 2

Grouping Sets

Allows multiple grouping clauses to be specified in a single
statement
Logically equivalent to the union of multiple subselects with
the group by clause in each subselect corresponding to one
grouping set
Using grouping-sets allows the groups to be computed with
a single pass over the base table

SELECT c.country, tt.tcid, substr (t.name,1,27) as test_name,
 count(*) as test_taken
 FROM db2cert.test_taken tt,db2cert.test t,db2cert.candidate c
 WHERE tt.number = t.number AND tt.cid = c.cid
 GROUP BY ROLLUP (c.country,tt.tcid,t.name)
 ORDER BY c.country, tt.tcid, t.name

COUNTRY TCID TEST_NAME TESTS_TAKEN
------------- ---- ----------------------------- ------------
Canada TX01 DB2 Administration 2
Canada TX01 DB2 Application Development 2
Canada TX01 DB2 Fundamentals 2
Canada TX01 - 6
Canada - - 6
Germany TR01 DB2 Application Development 2
Germany TR01 DB2 Fundamentals 1
Germany TR01 - 3
Germany - - 3
- - - 9

Group By Rollup

Extension to the GROUP BY clause that produces a result
set that contains subtotal rows in addition to the "regular"
grouped rows

SELECT c.country, tt.tcid,
 SUBSTR(t.name,1,27) AS test_name,
 COUNT(*) AS tests_taken
FROM db2cert.test_taken tt,
 db2cert.test t, db2cert.candidate c
WHERE tt.number = t.number
 AND tt.cid = c.cid
GROUP BY

CUBE (c.country,tt.tcid,t.name)
ORDER BY c.country,tt.tcid,t.name

COUNTRY TCID TEST_NAME TESTS_TAKEN
------------- ---- ----------------------------- ------------
Canada TX01 DB2 Administration 2
Canada TX01 DB2 Application Development 2
Canada TX01 DB2 Fundamentals 2
Canada TX01 - 6
Canada - DB2 Administration 2
Canada - DB2 Application Development 2
Canada - DB2 Fundamentals 2
Canada - - 6
Germany TR01 DB2 Application Development 2
Germany TR01 DB2 Fundamentals 1
Germany TR01 - 3
Germany - DB2 Application Development 2
Germany - DB2 Fundamentals 1
Germany - - 3
- TR01 DB2 Application Development 2
- TR01 DB2 Fundamentals 1
- TR01 - 3
- TX01 DB2 Administration 2
- TX01 DB2 Application Development 2
- TX01 DB2 Fundamentals 2
- TX01 - 6
- - DB2 Administration 2
- - DB2 Application Development 4
- - DB2 Fundamentals
- - - 9

Group By Cube

Produces a result set that contains all the rows of a
ROLLUP aggregation and "cross-tabulation" rows

SELECT DAY,
 AVG (SALES) OVER
 (ORDER BY DAY ROWS
 BETWEEN 1 PRECEDING AND 1 FOLLOWING)
 AS SMOOTH_VALUE FROM SALES ;

DAY SMOOTH_VALUE
--------------------- ------------------------

1 12
2 12
3 14
4 16
5 16
6 16
7 15
8 17
9 14
10 13

Moving Function

Allows column functions to be applied to a "window" of
data

Chapter 7: Advanced SQL
Recursive SQL
Outer Join
OLAP SQL
CASE Expressions
Typed Tables
Materialized Query Tables

SELECT COUNT (CASE WHEN decimal (score) > 90 then 1
 ELSE null END) AS moregb90,
 COUNT (CASE WHEN decimal (score) = 90 then 1
 ELSE null END) AS equalgb90,
 COUNT (CASE WHEN decimal (score) < 70 then 1
 ELSE null END) AS minorgb70,
 COUNT (CASE WHEN number=test_id('500') then 1
 ELSE null END) AS equalgb500
FROM db2cert.test_taken ;

Allow an expression to be selected based on the evaluation of
one or more conditions
If no case evaluates to true and the ELSE keyword is present then
the result is the value of the result-expression or NULL
If no case evaluates to true and the ELSE keyword is not present
then the result is NULL
CASE can be placed in SELECT clauses, WHERE predicates,
grouping lists, functions, etc

CASE Expression

Chapter 7: Advanced SQL
Recursive SQL
Outer Join
OLAP SQL
CASE Expressions
Typed Tables
Materialized Query Tables

Structured Types

CREATE TYPE Person_t AS
 (name VARCHAR(40)
 , birthyear INTEGER)
 REF USING INTEGER
 MODE DB2SQL

CREATE TYPE Emp_t
 UNDER Person_t AS
 (salary INTEGER)
 MODE DB2SQL

CREATE TYPE Prof_t
 UNDER Emp_t AS
 (specialty VARCHAR(20))
 MODE DB2SQL

CREATE TYPE Student_t
 UNDER Person_t AS
 (major VARCHAR(10)
 , archivm DECIMAL(1,2))
 MODE DB2SQL

CREATE TYPE Dept_t AS
 (name VARCHAR(20)
 , budget INTEGER
 , mgr REF(Emp_t))
 MODE DB2SQL

ALTER TYPE Emp_t
 ADD ATTRIBUTE dept
 REF(Dept_t)

Dept_t

Prof_t

Student_t Emp_t

Person_t

A user-defined structured type may include zero or more attributes
May be a subtype allowing attributes to be inherited from a supertype

Typed Tables and Table Hierarchy

CREATE TABLE person
 OF Person_t
 (REF IS oid USER GENERATED)

CREATE TABLE emp
 OF Emp_t UNDER person
 INHERIT SELECT PRIVILEGES

CREATE TABLE student
 OF Student_t UNDER person
 INHERIT SELECT PRIVILEGES

person

oid name birth
year

oid name birth
year salary oid name birth

year major archivm

emp student

Tables that contain structured types are called 'Typed Tables'
Typed tables can inherit attributes from parent table or supertable
Single inheritance only

Typed Tables - Example

CREATE TABLE person
 OF Person_t
 (REF IS oid USER
 GENERATED)

CREATE TABLE student
 OF Student_t UNDER person
 INHERIT SELECT PRIVILEGES

CREATE TABLE prof
 OF Prof_t UNDER emp
 INHERIT SELECT PRIVILEGES

CREATE TABLE emp
 OF Emp_t UNDER person
 INHERIT SELECT
 PRIVILEGES

ALTER TABLE emp
 ALTER COLUMN dept
 ADD SCOPE dept

CREATE TABLE
 dept of Dept_t
 (REF IS oid
 USER GENERATED,
 mgr WITH OPTIONS
 SCOPE emp)

dept

prof

student emp

person

dept
mgr

Table Person
OID NAME BIRTHYEAR
---- ---------- ---------
10 John 1968
20 Paul 1961

Table student
OID NAME BIRTHYEAR MAJOR ARCHIVM
------ --------- --------- ------- ---------
 100 Franzis 1975 pol 2,50
 110 Herb 1980 math 1,70

Table prof
OID NAME BIRTHYEAR SALARY DEPT SPECIALTY
---- -------- ---------- -------- ----- -----------
 70 Rich 1941 90000 3 oec
 80 Herb 1962 120000 3 math

Table emp
OID NAME BIRTHYEAR SALARY DEPT
 ---- ------ ---------- --------

 30 Pat 1970 60000 1
 40 Hitomi 1977 65000 2
 90 Lou - - -
 50 Sam 1968 60000 4
 60 Uta 1961 95000 3

Table dept
OID NAME BUDGET MGR
----- ------- -------- ----
1 math 300000 80
2 oec 500000 70
3 headq 5000000 90
4 itso 1000000 60

Here is the content of all tables (assuming some rows are inserted).
All inherited columns are in bold.

Typed Tables - Example

Hierarchy Table

Also known as the H-Table
It holds all attributes of the tables in the table hierarchy
There is one H-Table for each root type
System catalog table SYSCAT.HIERARCHIES contains relationship
between the sub-tables and super-tables
The H-Table cannot be manipulated with SQL statements

Person_Hierarchy

TYPE_ID OID NAME BIRTHYEAR MAJOR ARCHIVM SALARY DEPT SPECIALTY
------- ---- -------- ---------- ------ ------- ------ ----- ---------
1035 10 John 1968 - - - - -
1037 100 Franzis 1975 pol 2.50 - - -
1039 30 Pat 1970 - - 60000 1 -
1041 70 Rich 1962 - - 120000 3 math

Reference Columns

A column can be declared as a reference to another typed table (also
called a target table)
Value in reference column can identify a row exists in the target table or
does not exist in the target table
Similar, but not equal, to a foreign key

CREATE TABLE EMP (...
DEPTNO REF(DEPT_TYPE) SCOPE DEPT,
MGR REF(EMP_TYPE) SCOPE EMP, ...) ;

A "dereference" operator X -> Y is introduced
Meaning: follow reference X to its target table and select column Y
Instead of a join we use this syntax:

SELECT name, salary, dept->name, dept->budget FROM emp
WHERE dept->budget > 500000 ;

emp

dept

mgr

dept

Example - SQL (1)
Insert an employee 'Tetsu' with oid '200', born 1968,
$65000 a year and assign him to 'itso' department

INSERT INTO emp (oid, name, birthday, salary, dept)
 VALUES (Empt_t(200), 'Tetsu', 1968, 65000,
 (SELECT oid FROM dept WHERE name='itso'))

Select all attributes of all employees (Emp_t and Prof_t)
born after 1970 who earned more than $50000 a year:

SELECT * FROM emp
WHERE birthyear > 1970 AND salary > 50000

Change the birthyear of a person (employee, professor,
student) whose oid is 10 to be 1969:

UPDATE person SET birthyear = 1969
WHERE oid = emp_t(10)

Example - SQL (2)

Find the name, salary, corresponding department and
budget of employee working in departments with
budget > 100000

SELECT name, salary, dept->name, dept->budget
FROM emp
WHERE dept->budget > 500000

Find the name of all employees whose manager's
manager is 'Lou'

SELECT name
FROM emp
WHERE dept->mgr->dept->mgr->name = 'Lou'

Select employees who are inserted into table emp (No
rows of subtables)

SELECT * FROM only (emp)
WHERE dept->budget > 500000

Select all person who were born before 1965, and
they are either student or person (excluding
employee and professor)

SELECT * FROM person
WHERE birthyear < 1965 AND
 DEREF(oid) is of dynamic type
(Student_t,only person_t)

Example - SQL (3)

Chapter 7: Advanced SQL
Recursive SQL
Outer Join
OLAP SQL
CASE Expressions
Typed Tables
Materialized Query Tables

Materialized Query Tables

Summary Table

Base
Table #1

Base
Table #2

Base
Table #3

Base
Table #4

Base
Table #n.....

Query
#4

Query
#5

Query
#n

Query
#3

Query
#2Query

#1

Called Summary Tables prior to DB2 V8
Aggregate Aware Optimization - if the SQL compiler determines a query
will run more efficiently against a materialized query table than the base
table or tables, materialized query table will be used instead
Definition based on the result of a query, contains precomputed results
Improve performance and increase throughput of system

Two types of materialized query tables:
MAINTAINED BY SYSTEM

Tables are mainted by the system
If base tables are updated, use the REFRESH option to indicate when the
materialized query tables are refreshed:

REFRESH IMMEDIATE - when base data is changed, materialized query
tables are refresh immediately
REFRESH DEFERRED - materialized query tables will not reflect changes to
the underlying base table

MAINTAINED BY USER
Use custom applications to maintain and load the tables
Must be defined as REFRESH DEFERRED

To manually refresh the materialized query table when the base table is
changed, use the REFRESH TABLE statement

With activity affecting the source data, a materialized query table over time will no
longer contain accurate data, use the REFRESH TABLE statement

DATA INITIALLY DEFERRED option
Data is not inserted into the table as part of the CREATE TABLE statement
Use the REFRESH TABLE statement to populate data into the table

Materialized Query Tables

Materialized Query Tables - Examples

Example:
CREATE TABLE abc (col1, col2, col3, col4)

AS (SELECT FROM)
DATA INITIALLY DEFERRED
REFRESH IMMEDIATE
ENABLE QUERY OPTIMIZATION
MAINTAINED BY SYSTEM

Example:
REFRESH TABLE abc INCREMENTAL

INCREMENTAL
Only refresh the appended portion content
If such a request cannot be satisfied, an error (SQLSTATE 55019) is returned

NOT INCREMENTAL
Specifies a full refresh for the table by recomputing the materialized query table definition

ENABLE QUERY OPTIMIZATION
Table can be used for query optimization under appropriate circumstances

DISABLE QUERY OPTIMIZATION
Table will not be used for query optimization, it can still be queried directly

Materialized query tables are never considered by static embedded SQL queries
CURRENT REFRESH AGE special register

Specifies the amount of time that the materialized query table defined with REFRESH DEFERRED
can be used for dynamic queries before it must be refreshed
To set CURRENT REFRESH AGE, use SET CURRENT REFRESH AGE statement
The CURRENT REFRESH AGE special register can be set to ANY, or 99999999999999, or a
timestamp duration with a data type of DECIMAL(20,6)
A value of zero (0) indicates that only materialized query tables defined with REFRESH IMMEDIATE
may be used to optimize the processing of a query

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register
Specifies a VARCHAR(254) value that identifies the types of tables that can be considered when
optimizing dynamic SQL queries
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION SYSTEM
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION USER

Use Materialized Query Tables For Query Optimization

Staging Tables

A staging table allows incremental maintenance support for deferred
materialized query table
Collects changes that need to be applied to the materialized query table to
synchronize it with the contents of underlying tables
Eliminates the high lock contention caused by immediate maintenance
content when an immediate refresh of the materialized query table is
requested
The materialized query tables no longer need to be entirely regenerated
whenever a REFRESH TABLE is performed

