DB2 Data Management Software E == ===

III

business soltware

Chapter 7: Advanced SQL

IBM DB2 Universal Database V8.1
Database Administration Certification Preparation Course

Maintained by Clara Liu

IBM Software Group

= Recursive SQL

= Quter Join

= OLAP SQL

= CASE Expressions

= Typed Tables

= Materialized Query Tables

m Data Management Software

DB2 Data Management Software E =

III

business soltware

Chapter 7: Advanced SQL

Recursive SQL

Outer Join

OLAP SQL

CASE Expressions

Typed Tables

Materialized Query Tables

IBM Software Group

Recursive SQL

= A recursive SQL statement is used when an SQL repeatedly uses the
resulting set to determine further resuilts.

= |.e. bill-of-materials or routing information

WITH path (origin, destiny, distance, stops)
AS (SELECT f.origin, f.destiny, f.distance

FROM flights f
WHERE origin="'Sweden'
UNION ALL
SELECT p.origin, f.destiny,

p.distance+f.distance, p.stops+1
FROM flights f, path p
WHERE p.destiny=f.origin)
Sl SELECT origin, destiny, distance, stops FROM path

m Data Management Software

Recursive SQL - Result Sets

-~

5

ORIGIN DESTINY

SQL0347W The recursive common table expression 'DB2.PATH®

DISTANCE

can contain an infinite loop. SQLSTATE=01605

Sweden New York
Sweden Chicago
Sweden Toronto
Sweden Chicago
Sweden Austin

8000

8700
9000
10500
11300

NN b O O

=

m Data Management Software

DB2 Data Management Software E =

III

business soltware

Chapter 7: Advanced SQL

Recursive SQL

Outer Join

OLAP SQL

CASE Expressions

Typed Tables

Materialized Query Tables

IBM Software Group

Joins or Inner Joins

= Result set consists only of those matched rows that are
present in both joined tables

/o

SELECT fname, wphone, MAX(DECIMAL (score))
FROM db2cert.candidate c
INNER JOIN
dbZ2cert.test_taken tt ON c.cid=tt.cid
GROUP BY fname, wphone

m Data Management Software

Left Outer Join

= Includes rows from the left table that were missing from the
Inner join

SELECT fname, wphone, MAX (DECIMAL (score))
FROM dbZ2cert.candidate c
LEFT OUTER JOIN
db2cert.test_taken tt ON c.cid=tt.cid
GROUP BY fname, wphone

m Data Management Software

Right Outer Join

= [ncludes rows from the right table that were missing from the
Inner join

SELECT name, count (DISTINCT char(tt.cid))
FROM db2cert.candidate c
RIGHT OUTER JOIN
do2cert.test takent ON c.number = t.number
GROUP BY name

m Data Management Software

Full Ou_ter Join_ |

= [ncludes rows from both the left and right tables that were
missing from the inner join

candidate

SELECT name, count (DISTICT char(tt.cid))
FROM dbZ2cert.test_taken tt
FULL OUTER JOIN
db2cert.test t ON tt.number = t.number
GROUP BY name

m Data Management Software

DB2 Data Management Software E =

III

business soltware

Chapter 7: Advanced SQL

Recursive SQL

Outer Join

OLAP SQL

CASE Expressions

Typed Tables

Materialized Query Tables

IBM Software Group

Star Schema
[0 Fact Table
[[] Dimension Table

PK Primary Key
FK Foreign Key

Candidate @

PK 9 candidate ID

Name
Phone

m Data Management Software

Test Center

Center ID
Name
No. Seats

PK
l—

PN

Test Taken

E
l& Candidate_ID

Center ID
Test ID <@

Date
Score

FK

T —

PK

% e

P Test ID

Name
Cut Score

Grouping Sets

= Allows multiple grouping clauses to be specified in a single

Sstatement

= | ogically equivalent to the union of multiple subselects with
the group by clause in each subselect corresponding to one

grouping set

= Using grouping-sets allows the groups to be computed with
a single pass over the base table

SELECT tt.tcid,t.name,count(*)

FROM db2Zcert.test_taken tt,
db2cert.test t

WHERE tt.number=t.number
GROUP BY GROUPING SETS
(tt.tcid,(tt.tcid,t.name))

m Data Management Software

TCID NAME

TRO1 DB2 Application Development
TRO01 DB2 Fundamentals
TX01 DB2 Administration
TX01 DB2 Application Development
TX01 DB2 Fundamentals

Group By Rollup

= Extension to the GROUP BY clause that produces a result
set that contains subtotal rows in addition to the "regular”
grouped rows

SELECT c.country, tt.tcid, substr (t.name,1,27) astest name,
count(*) astest_taken
FROM db2cert.test_taken tt,db2cert.test t,db2cert.candidate c
WHERE tt.number = t.number AND tt.cid = c.cid
GROUP BY ROLLUP (c.country,tt.tcid,t.name)
ORDER BY c.country, tt.tcid, t.name

COUNTRY TCID TEST _NAME TESTS TAKEN
Canada TX01 DB2 Adminigtration 2

Canada TX01 DB2 Application Development 2

Canada TX01 DB2 Fundamentals 2

Canada TXO01 - 6

Germany TRO1 DB2 Application Development 2
Gemany TRO1 DB2 Fundamentals 1
Germany TROL - 3

m Data Management Software)

Group By Cube

» Produces a result set that contains all the rows of a
ROLLUP aggregation and "cross-tabulation" rows

COUNTRY TCID TEST_NAME TESTS TAKEN
Canada TX01 DB2 Adminigration 2
Canada TX01 DB2 Application Development 2
SELECT c.country, tt.tcid, Caneda TXO01 DB2 Fundamentdls 2
BSTR(t.name1,27) AStest name, cows . - X
SU . 1Ly | y Canada - DB2 Adminigration 2
COuU NT(*) AS tests taken Canada - DB2 Application Development 2
- Canada - DB2 Fundamentals 2
FROM dbZ2cert.test_taken tt, Canada - - 5
db2cert.test t, db2cert.candidate ¢ o ioid T pa Ao evdopment 2
WHERE tt.number = t.number Germany TROL- 3
e ; Germany - DB2 Application Devel opment 2
AND tt.cid = c.cid Gemay - DB2 Fundamentals 1
GROUP BY Gemany - - 3
CUBE (c.country,tt.tcid,t.name) j T Do2 o caion Devdlopment :
ORDER BY c.country,tt.tcid,t.name - TROL - 3
- TX01 DB2 Adminidration 2
TX01 DB2 Application Development 2
TX01 DB2 Fundamentas 2
TXO01 - 6
DB2 Adminigration 2
Ni[Z pata Management Software) - DB2Application Developmel§ = == 4

DB2 Fundamentals

Moving F_unctio_n_

= Allows column functions to be applied to a "window" of
data

SELECT DAY,
AVG (SALES) OVER
(ORDER BY DAY ROWS
BETWEEN 1 PRECEDING AND 1 FOLLOWING)
AS SMIOOTH_VALUE FROM SALES:

DAY SMOOTH_VALUE

12
12
14
16
16
16
15
17
14
13

IS@OO\ICDU‘I-&OOI\)I—‘

m Data Management Software

DB2 Data Management Software E =

III

business soltware

Chapter 7: Advanced SQL

Recursive SQL

Outer Join

OLAP SQL

CASE Expressions
Typed Tables

Materialized Query Tables

IBM Software Group

CASE Expression

= Allow an expression to be selected based on the evaluation of
one or more conditions

= [f no case evaluates to true and the ELSE keyword is present then
the result is the value of the result-expression or NULL

= [f no case evaluates to true and the ELSE keyword is not present
then the result is NULL

= CASE can be placed in SELECT clauses, WHERE predicates,
grouping lists, functions, etc
SELECT COUNT (CASE WHEN decimal (score) > 90 then 1
ELSE null END) AS moregh90,
COUNT (CASE WHEN decimal (score) =90 then 1
ELSE null END) AS equalgh90,
COUNT (CASE WHEN decimal (score) < 70 then 1
ELSE null END) AS minorgb70,
COUNT (CASE WHEN number=test_id('500) then 1

ELSE null END) AS equalgh500
FROM db2cert.test_taken ;
m Data Management Software

DB2 Data Management Software E =

III

business soltware

Chapter 7: Advanced SQL

Recursive SQL

Outer Join

OLAP SQL

CASE Expressions

Typed Tables
Materialized Query Tables

IBM Software Group

Structured Types

= A user-defined structured type may include zero or more attributes
= May be a subtype allowing attributes to be inherited from a supertype

CREATE TYPE Person_t AS

(name VARCHAR(40)

Person t

, birthyear INTEGER)
REF USING INTEGER
MODE DB2SQL

Student_t

CREATE TYPE Student_t
UNDER Person_t AS
(major VARCHAR(10)
, archivm DECIMAL(1,2))
MODE DB2SQL

m Data Management Software

Dept t

.
.
.
A 4
A ’
’

CREATE TYPE Dept_t AS
(name VARCHAR(20)
, budget INTEGER
, mgr REF(Emp_t))
MODE DB2SQL

CREATE TYPE Emp_t

UNDER Person_t AS
(salary INTEGER)
MODE DB2SQL
ALTER TYPE Emp_t
ADD ATTRIBUTE dept
REF(Dept_t)

Prof t

CREATE TYPE Prof t
UNDER Emp_t AS

(specialty VARCHAR(20))

MODE DB2SQL

Typed Tables and Table Hierarchy

= Tables that contain structured types are called 'Typed Tables'
= Typed tables can inherit attributes from parent table or supertable

= Single inheritance only

= CREATE TABLE person

OF Person_t

(REF 1S oid USER GENERATED)

=CREATE TABLE enp

OF Enp_t UNDER person

| NHERI T SELECT PRI VI LEGES

= CREATE TABLE st udent

OF Student t UNDER person
| NHERI T SELECT PRI VI LEGE

emp

person

name

birth
year

student v

oid

name

birth
year

salary

oid

m Data Management Software

name

birth

year

major

archivm

Typed Tables - Example

CREATE TABLE

CREATE TABLE person dept of Dept t
OF Person_t (REF I'S oid -
(REF 1S ol d USER| hargon d USER GENERATED
ept !
GENERATED) & p ngr W TH OPTI ONS
l SCOPE enp)

dept-.”
S magr

student CREATE TABLE enp
OF Enp_t UNDER person
CREATE TABLE st udent | NHERI T SELECT
OF Student t UNDER person PRI VI LEGES
| NHERI T SELECT PRI VI LEGES

ALTER TABLE enp
ALTER COLUMWN dept
Y ADD SCOPE dept

prof

CREATE TABLE pr of
OF Prof t UNDER enp
| NHERI T SELECT PRI VI LEGES

m Data Management Software

Typed Tables - Example

Here is the content of all tables (assuming some rows are inserted).
All inherited columns are in bold.

Table dept
Table Person OD NAME BUDGET MR
O D NAME Bl RTHYEAR o . o
TTTT TTTTTTToos s 1 mat h 300000 80
10 John 1968 2 oec 500000 70
20 Paul 1961 3 headqg 5000000 90
4 itso 1000000 60
Table student Table emp
aD NANVE Bl RTHYEAR MAJOR ARCHI VM O D NAME Bl RTHYEAR SALARY
100 Franzi s 1975 pol 2,50 "7 c
110 Her b 1980 mat h 1, 70 30 Pat 1970 60000
40 Hitom 1977 65000
90 Lou - -
Table prof 50 Sam 1968 60000
O D NAVE Bl RTHYEAR SALARY DEPT SPECI ALTY 60 Uta 1961 95000
70 Rich 1941 90000 3 oec
80 Herb 1962 120000 3 mat h

m Data Management Software

DEPT

LN P

N

Hierarchy Table

= Also known as the H-Table
= |t holds all attributes of the tables in the table hierarchy
= There is one H-Table for each root type

= System catalog table SYSCAT.HIERARCHIES contains relationship
between the sub-tables and super-tables

= The H-Table cannot be manipulated with SQL statements

Person_Hierarchy

TYPE_ID O D NAME Bl RTHYEAR MAJOR ARCHI VM SALARY DEPT SPECI ALTY
1035 10 John 1968 - -

1037 100 Franzis 1975 pol 2.50 - -

1039 30 Pat 1970 - - 60000 1 -

1041 70 Rich 1962 - - 120000 3 mat h

m Data Management Software

Reference Columns

= A column can be declared as a reference to another typed table (also
called a target table)

= Value in reference column can identify a row exists in the target table or
does not exist in the target table

= Similar, but not equal, to a foreign key

» CREATE TABLE EMP (...
DEPTNO REF(DEPT_TYPE) SCOPE DEPT,
MGR REF(EMP_TYPE) SCOPE EMP, ...) ;

= A "dereference" operator X -> Y is introduced
= Meaning: follow reference X to its target table and select column 'Y

= [nstead of a join we use this syntax:

» SELECT name, salary, dept->name, dept->budget FROM emp
WHERE dept->budget > 500000 ;

-~
!. s mgr
- -
N S

R emp
dept
m Data Management Software

Example - SQL (1)

= Insert an employee 'Tetsu’ with oid '200', born 1968,
$65000 a year and assign him to 'itso' department

| NSERT | NTO enp (oid, nane, birthday, salary, dept)
VALUES (Enpt t(200), 'Tetsu', 1968, 65000,
(SELECT oid FROM dept WHERE nane='itso'))

= Select all attributes of all employees (Emp_t and Prof_t)
born after 1970 who earned more than $50000 a year:

SELECT * FROM enp
VWHERE birthyear > 1970 AND sal ary > 50000

= Change the birthyear of a person (employee, professor,
student) whose oid is 10 to be 1969:

UPDATE person SET birthyear = 1969
VWHERE oid = enp_t(10)

m Data Management Software

Example - SQL (2)

= Find the name, salary, corresponding department and
budget of employee working in departments with
budget > 100000

SELECT nane, sal ary, dept->nane, dept->budget
FROM enp
VWHERE dept - >budget > 500000

= Find the name of all employees whose manager's
manager is 'Lou’

SELECT nane
FROM enp
VWHERE dept - >ngr - >dept - >ngr - >nane = ' Lou'

m Data Management Software

Example - SQL (3)

= Select employees who are inserted into table emp (No
rows of subtables)

SELECT * FROM only (enp)
VWHERE dept - >budget > 500000

= Select all person who were born before 1965, and
they are either student or person (excluding
employee and professor)

SELECT * FROM per son

VWHERE birthyear < 1965 AND
DEREF(oid) is of dynamc type

(Student t,only person_t)

m Data Management Software

DB2 Data Management Software E =

III

business soltware

Chapter 7: Advanced SQL

Recursive SQL

Outer Join

OLAP SQL

CASE Expressions

Typed Tables

Materialized Query Tables

IBM Software Group

Materialized Query Tables

= Called Summary Tables prior to DB2 V8

= Aggregate Aware Optimization - if the SQL compiler determines a query
will run more efficiently against a materialized query table than the base
table or tables, materialized query table will be used instead

= Definition based on the result of a query, contains precomputed results
= |[mprove performance and increase throughput of system

Query
#4

Summary Table

BN

Base Base Base Base Base
Table #1 Table #2 Table #3 Table #4 |..... Table #n

m Data Management Software

Materialized Query Tables

= Two types of materialized query tables:

» MAINTAINED BY SYSTEM
= Tables are mainted by the system

— If base tables are updated, use the REFRESH option to indicate when the
materialized query tables are refreshed:

e REFRESH IMMEDIATE - when base data is changed, materialized query
tables are refresh immediately

e REFRESH DEFERRED - materialized query tables will not reflect changes to
the underlying base table

» MAINTAINED BY USER
= Use custom applications to maintain and load the tables
= Must be defined as REFRESH DEFERRED

= To manually refresh the materialized query table when the base table is

changed, use the REFRESH TABLE statement

> With activity affecting the source data, a materialized query table over time will no
longer contain accurate data, use the REFRESH TABLE statement

= DATA INITIALLY DEFERRED option

» Data is not inserted into the table as part of the CREATE TABLE statement
> Use the REFRESH TABLE statement to populate data into the table

Data Management Software

Materialized Query Tables - Examples

= Example:
» CREATE TABLE abc (coll, col2, col3, col4)
—AS (SELECT FROM)
—DATA INITIALLY DEFERRED
— REFRESH IMMEDIATE
—ENABLE QUERY OPTIMIZATION
—MAINTAINED BY SYSTEM

= Example:
» REFRESH TABLE abc INCREMENTAL
—INCREMENTAL
e Only refresh the appended portion content
e |f such a request cannot be satisfied, an error (SQLSTATE 55019) is returned
=NOT INCREMENTAL
* Specifies a full refresh for the table by recomputing the materialized query table definition

m Data Management Software

Use Materialized Query Tables For Query Optimization

= ENABLE QUERY OPTIMIZATION

» Table can be used for query optimization under appropriate circumstances

= DISABLE QUERY OPTIMIZATION

» Table will not be used for query optimization, it can still be queried directly
= Materialized query tables are never considered by static embedded SQL queries

= CURRENT REFRESH AGE special register
» Specifies the amount of time that the materialized query table defined with REFRESH DEFERRED
can be used for dynamic queries before it must be refreshed
» To set CURRENT REFRESH AGE, use SET CURRENT REFRESH AGE statement

» The CURRENT REFRESH AGE special register can be set to ANY, or 99999999999999, or a
timestamp duration with a data type of DECIMAL(20,6)

> A value of zero (0) indicates that only materialized query tables defined with REFRESH IMMEDIATE
may be used to optimize the processing of a query

= CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register
» Specifies a VARCHAR(254) value that identifies the types of tables that can be considered when
optimizing dynamic SQL queries
» SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION SYSTEM
» SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION USER

m Data Management Software

Staging Tables

= A staging table allows incremental maintenance support for deferred
materialized query table

= Collects changes that need to be applied to the materialized query table to
synchronize it with the contents of underlying tables

= Eliminates the high lock contention caused by immediate maintenance
content when an immediate refresh of the materialized query table is
requested

= The materialized query tables no longer need to be entirely regenerated
whenever a REFRESH TABLE is performed

m Data Management Software

